Note

A ¹³C-n.m.r. study of the 6-deoxy-D-altropyranose-containing pentasaccharide chain present in a polysialoglycoprotein isolated from the eggs of *Salvelinus leucomaenis pluvius* (Japanese common char; *Iwana*)

MARIKO IWASAKI AND SADAKO INOUE

School of Pharmaceutical Sciences, Showa University, Hatanodai-1, Shinagawa-ku, Tokyo 142 (Japan) (Received December 31st, 1987; accepted for publication, February 9th, 1988)

A new deoxyhexose residue in the polysialoglycoprotein (PSGP) isolated¹ from the eggs of Salvelinus leucomaenis pluvius has been identified² as 6-deoxy-D-altrose (D-dAlt). The occurrence of D-dAlt has not been recognised hitherto in glycoproteins. The anomeric configuration of the D-dAlt moiety in the penta-saccharide¹, D-dAlt-(1 \rightarrow 3)- β -D-GalNAc-(1 \rightarrow 3)- β -D-Gal-(1 \rightarrow 4)- β -D-Gal-(1 \rightarrow 3)-D-GalNAcol (1), isolated¹ from PSGP has been assigned² tentatively as β on the basis of its ¹H-n.m.r. data. Recent technical developments have greatly facilitated the ¹³C-n.m.r. spectroscopy of small samples (1 mg), and we now report on the ¹³C-n.m.r. spectra of the dAlt-pentasaccharide 1 and the related di- and oligo-saccharides α -L-Fuc-(1 \rightarrow 3)- β -D-GalNAc-(1 \rightarrow 3)- β -D-Gal-(1 \rightarrow 4)- β -D-Gal-(1 \rightarrow 3)-D-GalNAcol (2), β -D-Gal-(1 \rightarrow 4)- β -D-Gal-(1 \rightarrow 3)-D-GalNAcol (3), and β -D-Gal-(1 \rightarrow 3)-D-GalNAcol (4).

The ¹³C-n.m.r. data for solutions of **1-4** in D₂O are shown in Table I. The resonances of **1** were assigned on the basis of comparison with data for the constituent di- (**4**) and tri-saccharide (**3**), the homologous α -L-Fuc-containing pentasaccharide **2**, and related mono- and oligo-saccharide derivatives³⁻⁷. The data in Table I confirm the sequence of monosaccharide residues in **1** and the positions of the linkages (the resonances of the carbons involved in the linkages can be assigned on the basis that O-glycosylation results^{8,9} in a downfield displacement of ~10 p.p.m.) already established^{2,10}. Except for the signals of the D-dAlt and α -L-Fuc residues, the other ¹³C resonances of **1** and **2** show virtually the same chemical shifts. The resonances for the β -D-dAlt and α -L-Fuc residues were assigned by comparison with data^{3,5} for methyl α -D-dAlt β , α -and β -D-Fuc, phenyl α -L-Fuc, methyl α - and β -L-dAlt β , α -L-Fuc-(1 β -D-Gal-(1 β -D-Gal-(1 β -D-GlcNAcol.

The β configuration of the D-dAltp moiety is assigned on the basis of the data in Table II. The important signals are those for C-1 and C-5. Comparison of the

TABLE I $^{13}\text{C-n.m.r.}$ Chemical shift data and assignments for 1–4

	4	3	2	1
→3)-GalNAcol				
C-1	61.5	61.5	61.5	61.5
C-2	52.45	52.4	52.4	52.4
C-3	77.2	77.7ª	77.7b	77.7
C-4	70.3	70.2	70.2	70.2
C-5	70.0	70.0	70.0	70.0
C-6	63.9	63.8	63.8	63.8
-COCH ₃	23.0	23.0	23.0	23.0
-COCH ₃	175.1	175.0	175.0	175.0
→4)-Gal-(1→				
C-1	104.7	104.7	104.8	104.7
C-2	72.0	72.3	72.3	72.3
C-2 C-3	73.4	73.8	73.9	73.9
C-4	69.4		73.9 77.9 ^b	73.9 77.9
C-5		78.0_5^a		
	75.9 ₅	75.3	75.3	75.3
C-6	62.0	61.9	61.9	61.9
\rightarrow 3)-Gal-($l\rightarrow$		405.4	405.0	105.0
C-1		105.1	105.0	105.0
C-2		72.3	71.4_{5}	71.4
C-3		73.7	82.8	82.8
C-4		69.6	69.4	69.3
C-5		76.1	75.6	75.6
C-6		61.9	61.9	61.9
\rightarrow 3)-GalNAc-(1 \rightarrow				
C -1			103.5	103.3
C-2			52.7	52.9
C-3			79.3	79.8
C-4			68.9 ₅	68.9
C-5			75.8	75.6
C-6			61.9	61.9
-COCH ₃			23.4	23.4
-COCH ₃			175.7	175.3
Fuc- in 2 and dAlt in 1				
C -1			102.0	100.4
C-2			69.1	72.0
C-3			70.3	71.1
C-4			72.6	70.3
C-5				
C-6			68.1	70.84
C-0			16.5	18.3

 $^{^{}a-d}$ Assignments are interchangeable.

NOTE 231

TABLE II
¹³ C-N.M.R. CHEMICAL SHIFT DATA FOR 6-DEOXYALTROPYRANOSIDES

	Me α-D-dAltp	1	Me α-L-dAltp ⁷	Me β-L-dAltp ⁷
C-1	101.3	100.4	101.2	100.3
C-2	71.0	72.0	70,7	71.1
C-3	70.8	71.1^{a}	70.7	70.7
C-4	70.7	70.3	70.7	70.4
C-5	67.1	70.8^{a}	66.7	70.7
C-6	17.5	18.3	17.0	17.8
OCH ₃	56.4		56.1	57.3

^aAssignments are interchangeable.

chemical shifts of the C-1 resonances⁷ of the methyl α - (101.2 p.p.m.) and β -glycosides (100.3 p.p.m.) of L-dAlt shows that C-1 α resonates at \sim 1 p.p.m. downfield of the C-1 β resonance. In contrast, the C-5 α resonance is \sim 4 p.p.m. to higher field than the C-5 β resonance. Comparison of the data for Me α -D-dAlt and the D-dAlt residue in 1 indicates the latter to be β .

Empirical rules such as the one discussed above should be used with caution and their applicability to the 6-deoxyaltrosyl system (cf. ref. 11) may reflect the conformational properties of altrohexopyranosides^{2,12}.

EXPERIMENTAL

Materials. — Methyl 6-deoxy- α -D-altropyranoside was prepared² from methyl 4,6-O-benzylidene- α -D-altropyranoside. Oligosaccharides **1–4** were obtained as previously described^{1,2}.

 13 C-N.m.r. spectroscopy. — Natural-abundance proton-decoupled 13 C-n.m.r. spectra were recorded at 27° with a JEOL-JNM-GX400 spectrometer operating at 100 MHz in the pulsed F.t. mode on solutions in D_2O [internal MeOH, 51.3 p.p.m. downfield from the resonance of sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS), 49.9 p.p.m. from the signal for Me₄Si]. The chemical shift data in Tables I and II are reported relative to Me₄Si. A solution of 1 (1 mg) in 99.75% D_2O (0.5 mL) in a 4-mm tube required 91,000 accumulations (68 h).

ACKNOWLEDGMENTS

We thank Professor H. Hashimoto for providing the methyl 4,6-O-benzylidene- α -D-altropyranoside, and Ms. Miki Nagasao for obtaining the ¹³C-n.m.r. spectra. This work was aided in part by Grant-in-Aid 61580151 for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

REFERENCES

- 1 M. IWASAKI AND S. INOUE, Glycoconjugate J., 2 (1985) 209-228.
- 2 M. IWASAKI, S. INOUE, AND Y. INOUE, Eur. J. Biochem., 168 (1987) 185-192.
- 3 A. S. Shashkov, N. A. Arbatsky, V. A. Derevitskaya, and N. K. Kochetkov, *Carbohydr. Res.*, 72 (1979) 218–221.
- 4 D. E. DORMAN AND J. D. ROBERTS, J. Am. Chem. Soc., 93 (1971) 4463-4472.
- 5 R. U. LEMIEUX, K. BOCK, L. T. J. DELBAER, S. KOTO, AND V. S. RAO, *Can. J. Chem.*, 58 (1980) 631–653
- 6 D. R. BUNDLE, H. J. JENNINGS, AND I. C. P. SMITH, Can. J. Chem., 51 (1973) 3812-3819.
- 7 R. P. GORSHKOVA, E. N. KALMYKOVA, V. N. ISAKOV, AND Y. S. OVODOV, *Eur. J. Biochem.*, 150 (1985) 527–531.
- 8 F. R. SEYMOUR, ACS Symp. Ser., 103 (1979) 27-51.
- 9 K. DILL, E. BERMAN, AND A. A. PAVIA, Adv. Carbohydr. Chem. Biochem., 43 (1985) 1-49.
- 10 M. SHIMAMURA, T. ENDO, Y. INOUE, AND S. INOUE, Biochemistry, 22 (1983) 959-963.
- 11 T. A. W. KOERNER, JR., L. W. CARY, S.-C. LI, AND Y.-T. LI, Biochem. J., 195 (1981) 529-533.
- 12 S. J. ANGYAL AND V. A. PICKLES, Aust. J. Chem., 25 (1972) 1695–1710.